UNIVERSIDAD AUTÓNOMA DE AGUASCALIENTES
CENTRO DE CIENCIAS BÁSICAS
DEPARTAMENTO DE MORFOLOGÍA
LIC. EN PSICOLOGÍA
MORFOLOGÍA DEL SISTEMA NERVIOSO
TERCERA PRÁCTICA “NEUROHISTOLOGIA”
4 DE SEPTIEMBRE DEL 2008
VÍCTOR URIEL PADRÓN VILLALOBOS
TERCERA PRACTICA: NEUROHISTOLOGÍA”.
OBJETIVO:
Identificar al microscopio óptico, las características estructurales del sistema nervioso.
MATERIAL DIDÁCTICO:
a) Preparación histológica de médula espinal
b) Preparación histológica de nervio
ACTIVIDADES:
OBSERVACIONES Y ANOTACIONES
Los alumnos de acuerdo a las indicaciones de los profesores procederán a observar las imágenes histológicas que se proyectarán
Médula espinal (40x) :
Sustancia Gris: Astas o cuernos (cuerpos de motoneuronas: Nissl, núcleo y nucléolo) (Fibras nerviosas)
Sustancia Blanca: (fibras nerviosas y núcleos de células de glía)
Nervio (40x):
Nervio periférico: vainas de tejido conectivo: endo, peri y epineurios. Fibras nerviosas. Núcleos de células de Schwann. Vaina de mielina.
REPORTE:
Elaborar un esquema que muestre lo observado en las laminillas
Contestar el siguiente cuestionario:
a) ¿Cuál es el mecanismo de acción de la xilocaína (lidocaína) en el nervio?
b) Elaborar un comentario de la sesión.
Psic. Martha E. Acosta Mata
M. en C. Luis Manuel Franco Gutiérrez
a) Cuál es el mecanismo de acción de la xilocaína (lidocaína) en el nervio?
Impiden la conducción de impulsos eléctricos por las membranas del nervio y el músculo de forma transitoria y predecible, originando la pérdida de sensibilidad en una zona del cuerpo
MECANISMO DE ACCIÓN DE LOS ANESTÉSICOS LOCALES
Los AL impiden la propagación del impulso nervioso disminuyendo la permeabilidad del canal de sodio, bloqueando la fase inicial del potencial de acción2-7. Para ello los anestésicos locales deben atravesar la membrana nerviosa, puesto que su acción farmacológica fundamental la lleva a cabo uniéndose al receptor desde el lado citoplasmático de la misma (Fig. 2). Esta acción se verá influenciada por:
1. El tamaño de la fibra sobre la que actúa (fibras Aa y b, motricidad y tacto, menos afectadas que las g y C, de temperatura y dolor).
2. La cantidad de anestésico local disponible en el lugar de acción.
3. Las características farmacológicas del producto.
Figura 2.Mecanismo de acción de los anestésicos locales.B= Base (fracción no ionizada, liposoluble); BH= Catión (fracción ionizada, hidrosoluble). (Tomado de Cousins4).
Esto explica el "bloqueo diferencial" (bloqueo de fibras sensitivas de dolor y temperatura sin bloqueo de fibras motoras), y también nos determinará la llamada "concentración mínima inhibitoria", que es la mínima concentración del anestésico local necesaria para bloquear una determinada fibra nerviosa.
Finalmente, otro factor que influye sobre la acción de los anestésicos locales es la "frecuencia del impulso", que ha llevado a postular la hipótesis del receptor modulado. Esta hipótesis sugiere que los anestésicos locales se unen con mayor afinidad al canal de sodio cuando éste se halla en los estados abierto o inactivo (es decir, durante la fase de
despolarización) que cuando se halla en estado de reposo, momento en el que se disocia del mismo. Las moléculas de anestésico local que se unen y se disocian rápidamente del canal de sodio (lidocaína) se verán poco afectadas por este hecho, mientras que moléculas que se disocian lentamente del mismo (bupivacaína) verán su acción favorecida cuando la frecuencia de estimulación es alta, puesto que no da tiempo a los receptores a recuperarse y estar disponibles (en estado de reposo). Este fenómeno tiene repercusión a nivel de las fibras cardiacas, lo que explican la cardiotoxicidad de la bupivacaína.
La cronología del bloqueo será:
- aumento de la temperatura cutánea, vasodilatación (bloqueo de las fibras B)
- pérdida de la sensación de temperatura y alivio del dolor (bloqueo de las fibras Ad y C)
- pérdida de la propiocepción (fibras Ag)
- pérdida de la sensación de tacto y presión (fibras Ab)
- pérdida de la motricidad (fibras Aa)
La reversión del bloqueo se producirá en orden inverso.
La sensación dolorosa está vehiculizada por las fibras tipo Ad y las fibras tipo C.
Grupo amina
Es la que determina la hidrosolubilidad de la molécula y su unión a proteínas plasmáticas y lo forma una amina terciaria o cuaternaria. Según los substituyentes del átomo de nitrógeno variará el carácter hidrosoluble de la molécula.
Otra característica de estas moléculas, excepto la de lidocaína, es la existencia de un carbono asimétrico, lo que provoca la existencia de dos esteroisómeros "S" o "R", que pueden tener propiedades farmacológicas diferentes en cuanto a capacidad de bloqueo nervioso, toxicidad o de ambos. En general las formas "S" son menos tóxicas. La mayoría de preparados comerciales están disponibles en forma racémica de anestésico local, excepto la ropivacaína, constituida tan solo por el enantiómero S-ropivacaína.
La clasificación según su estrctura química se recoge en la tabla 1.
Tabla 1. Clasificación de los AL.
Tipo éste
- cocaína- benzocaína- procaína- tetracaína- 2-cloroprocaína
Tipo amida
- lidocaína- mepivacaína- prilocaína- bupivacaína- etidocaína- ropivacaína
No hay comentarios:
Publicar un comentario